Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of nuclear data revised from JENDL-4.0 to JENDL-5 on PWR spent fuel nuclide composition

Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(11), p.1386 - 1396, 2023/11

 Times Cited Count:3 Percentile:95.99(Nuclear Science & Technology)

The burnup calculations for estimating the nuclide composition of the spent fuel are highly dependent on nuclear data. Many nuclides in the latest version of the Japanese Evaluated Nuclear Data Library JENDL-5 were modified from JENDL-4.0 and the modification affects the burnup calculations. This study confirmed the validity of JENDL-5 in the burnup calculations. The PIE data of Takahama-3 was used for the validation. The effect of modifications of the parameters, e.g., cross sections and fission yields, from JENDL-4.0 to JENDL-5 on the nuclide compositions was quantitatively investigated. The calculation results showed that JENDL-5 has a similar performance to JENDL-4.0. The calculation results also revealed that the modifications of the cross sections of actinide nuclides, fission yields, and thermal scattering low data of hydrogen in H$$_{2}$$O affected the nuclide compositions of PWR spent fuels.

Journal Articles

Depletion calculation of subcritical system with consideration of spontaneous fission reaction

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi

Journal of Nuclear Science and Technology, 59(4), p.424 - 430, 2022/04

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

JAEA Reports

Report of summer holiday practical training 2020; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 3

Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.

JAEA-Technology 2021-016, 16 Pages, 2021/09

JAEA-Technology-2021-016.pdf:1.8MB

As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (18$$times$$3 layers) fuel blocks with 20% enrichment of $$^{235}$$U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.

JAEA Reports

HTTR burnup characteristic analysis with detailed axial burning region using MVP-BURN

Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*

JAEA-Technology 2021-015, 32 Pages, 2021/09

JAEA-Technology-2021-015.pdf:2.74MB

Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k$$_{rm eff}$$, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for $$^{235}$$U and $$^{239}$$Pu, respectively, and even 30% for the burnable poison $$^{10}$$B. Regarding the division of burning regions to more detail, the change of k$$_{rm eff}$$ is also small of 0.6%$$Delta$$k/k or less. The small burning region gives a detailed distribution of isotopes such as $$^{235}$$U, $$^{239}$$Pu, and $$^{10}$$B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.

Journal Articles

Preparation for restarting the high temperature engineering test reactor; Development of utility tool for auto seeking critical control rod position

Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo

Nuclear Engineering and Design, 377, p.111161_1 - 111161_9, 2021/06

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

Journal Articles

Benchmarks of depletion and decay heat calculation between MENDEL and MARBLE

Yokoyama, Kenji; Lahaye, S.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.109 - 116, 2020/10

CEA/DEN/DM2S/SERMA and JAEA/NSEC are working on benchmarks for burnup, isotopic concentrations and decay heat calculations in the collaboration framework between both organisms. Both actors of this benchmark are independently developing their own simulation code systems for computing quantities of interest in nuclear fuel cycle domain: MENDEL in CEA and MARBLE in JAEA. The purpose of the benchmark is to verify each system by comparing both calculation results on specific applications. MENDEL uses a several solvers for the resolution of Bateman equation. Runge-Kutta method or Chebyshev Rational Approximation method (CRAM) are used for irradiation computations. An analytical solver can also be used for decay calculations. MARBLE can use Krylov subspace method or CRAM method. As the first phase of the benchmark, we compared the calculated results of decay heat and isotropic concentrations following by a Pu-239 fast fission pulse. We applied nuclear data from three libraries: (1) JEFF-3.1.1, (2) JENDL/DDF-2015 + JENDL/FPY-2011, and (3) ENDF/B-VII.1. Nuclear data and burnup chain were generated from these libraries independently on each system. We confirmed that the results for both systems were in very good agreement with each other. Numerical results were also compared to experimental data. As the second phase of the benchmark, we are proceeding with a burnup calculation benchmark of MENDEL and MARBLE using the nuclear data and burnup chain provided by ORLIBJ33, which is a set of cross-section data based on JENDL-3.3 for ORIGEN-2 code system. We will also compare with calculation results by the ORIGEN-2 code with ORLIBJ33. Since the series of ORLIB, that is, ORLIBJ32, ORLIBJ33, and ORLIBJ40, have been widely used especially in Japan for many years, the comparison with ORLIB is effective for confirming the performance of MENDEL and MARBLE.

JAEA Reports

Report of summer holiday practical training 2019; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 2

Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.

JAEA-Technology 2020-008, 16 Pages, 2020/08

JAEA-Technology-2020-008.pdf:2.98MB

As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the $$^{235}$$U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with $$^{235}$$U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.

Journal Articles

Validation of MOSRA-SRAC for burnup of a BWR fuel assembly

Kojima, Kensuke

Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.3283 - 3292, 2016/05

The MOSRA system has been developing to improve the applicability of the neutronic characteristic analyses. The cell calculation module MOSRA-SRAC is a core module of MOSRA, and applicability tests for realistic problems are required. As a test, MOSRA-SRAC is validated by comparison with measured values. As the measurement, the post irradiation examination SFCOMPO 99-5 is chosen. In the examination, the compositions of major heavy metal and fission product nuclides in a UO$$_{2}$$-Gd$$_{2}$$O$$_{3}$$ fuel rod pulled from the 8$$times$$8 BWR fuel assembly used in TEPCO's Fukushima-Daini-2 were measured. The result shows good agreement between calculated and measured value. For uranium and plutonium nuclides, calculated values agree within 5% except for $$^{238}$$Pu. $$^{238}$$Pu composition is overestimated by 30%, and the overestimation is caused by the unclearness of the void faction history of the fuel rod. For fission products, calculated values agree within approximately 10%.

JAEA Reports

SWAT4.0; The Integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki*

JAEA-Data/Code 2014-028, 152 Pages, 2015/03

JAEA-Data-Code-2014-028.pdf:13.39MB

There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0.

Journal Articles

Corrections to the $$^{148}$$Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

Suyama, Kenya; Mochizuki, Hiroki*

Annals of Nuclear Energy, 33(4), p.335 - 342, 2006/03

 Times Cited Count:8 Percentile:49.58(Nuclear Science & Technology)

The value of the burnup is one of the most important parameters of samples taken by post irradiation examination (PIE). In this study, concerning the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken at the Japan Atomic Energy Research Institute, the burnup values of the PIE samples were re-evaluated and the PIE data are re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. This analysis concludes that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected of 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is approximately 1% for PIE samples having the burnup of larger than 30 GWd/t. Comparison between calculation results using a single pin cell model and an assembly model is carried out. Because the both results agreed within a few percents, we concluded that the single pin cell model is suitable for the analysis of PIE samples and the underestimation of plutonium isotopes does not result from the geometry model.

Journal Articles

Effect of neutron induced reactions of neodymium-147 and 148 on burnup evaluation

Suyama, Kenya; Mochizuki, Hiroki*

Journal of Nuclear Science and Technology, 42(7), p.661 - 669, 2005/07

 Times Cited Count:15 Percentile:69.89(Nuclear Science & Technology)

Burnup is important value for criticality safety evaluation of spent nuclear fuel. Nd-148 method is one of most important method to evaluate the burnup of post irradiation examination (PIE) samples, and well known that it has good accuracy. However, the evaluated burnup values could be perturbed by the neutron capture reaction of Nd-147 and Nd-148. And in the analysis of PIE data from PWR, the calculation results of Nd-148 have approximately more than 1% deviation from experiment. In this study, the contribution of neutron capture reaction of Nd-147 and Nd-148 to Nd-148 amount are discussed. Especially for Nd-147 contribution, it is shown that the current evaluated cross section of Nd-147 is not supported and the new evaluation is consistent with the analysis of PIE data. Possible perturbed amount of Nd-148 by both reactions is less than 0.7% for normal reactor operation condition, and it is approximately 0.1% for 30 GWd/t (BWR) and 40 GWd/t (PWR). Finally, we confirm again that Nd-148 method is good evaluation method.

Journal Articles

Validation of integrated burnup code system SWAT2 by the analyses of isotopic composition of spent nuclear fuel

Suyama, Kenya; Mochizuki, Hiroki*; Okuno, Hiroshi; Miyoshi, Yoshinori

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 10 Pages, 2004/04

This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models.

Journal Articles

Classification of criticality calculations with correlation coefficient method and its application to OECD/NEA burnup credit benchmarks phase III-A and II-A

Okuno, Hiroshi

Journal of Nuclear Science and Technology, 40(7), p.544 - 551, 2003/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A method for classifying benchmark results of criticality calculations according to similarity was proposed in this paper. After formulation of the method utilizing correlation coefficients, it was applied to burnup credit criticality benchmarks Phase III-A and II-A, which were conducted by the Expert Group on Burnup Credit Criticality Safety under auspices of the OECD/NEA. Phase III-A benchmark was a series of criticality calculations for irradiated BWR fuel assemblies, whereas Phase II-A benchmark was a suite of criticality calculations for irradiated PWR fuel pins. These benchmark problems and their results were summarized. The correlation coefficients were calculated and sets of benchmark results were classified according to the criterion that the correlation coefficients were no less than 0.15 for Phase III-A and 0.10 for Phase II-A benchmarks. When a couple of results were in a same group, one result was found predictable from the other. An example was shown for each of the Benchmarks. The evaluated nuclear data seemed the main factor of errors.

Journal Articles

Update status of benchmark activity for reactor physics study of LWR next generation fuels

Unesaki, Hironobu*; Okumura, Keisuke; Kitada, Takanori*; Saji, Etsuro*

Transactions of the American Nuclear Society, 88, p.436 - 438, 2003/06

In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by JAERI has proposed "Reactor Physics Benchmark for LWR Next Generation Fuels". The next generation fuels aim at very high burn-up of about 70GWd/t in PWR or BWR with UO$$_{2}$$ or MOX fuels whose fissile enrichments may exceed the Japanese regulatory limitations for the current LWR fuels such as 5wt.% U-235. Until now, twelve organizations have pariticipated in the benchmark activity. From the comparison with the cell burn-up calculation results using different codes and library data, status of the calculation accuracy and future subjects are clarified.

Journal Articles

Burnup importance function introduced to give an insight into the end effect

Okuno, Hiroshi; Sakai, Tomohiro*

Nuclear Technology, 140(3), p.255 - 265, 2002/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In order to facilitate discussions based on quantitative analysis about the end effect, which is often talked about in connection to burnup credit in criticality safety evaluation of spent fuel, we introduced in this paper a burnup importance function. This function shows the burnup effect on the reactivity as a function of the fuel position; an explicit expression of this function was derived according to the perturbation theory. The burnup importance function was applied to the Phase IIA benchmark model that was adopted by the OECD/NEA Expert Group on Burnup Credit Criticality Safety. The function clearly displayed that burnup importance of the end regions increases (1) as burnup, (2) as cooling time, (3) in consideration of burnup profile, and (4) in consideration of fission products.

Journal Articles

Benchmark results of burn-up calculation for LWR next generation fuels

Okumura, Keisuke; Unesaki, Hironobu*; Kitada, Takanori*; Saji, Etsuro*

Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 10 Pages, 2002/10

In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by Japan Atomic Energy Research Institute has proposed "Reactor Physics Benchmark for LWR Next Generation Fuels". The next generation fuels aim at very high burn-up of about 70GWd/t in PWR or BWR with UO2 or MOX fuels whose fissile enrichments may exceed the Japanese regulatory limitations for the current LWR fuels such as 5wt.% U-235. Twelve organizations have carried out the analyses of the benchmark problems with different codes and data, and their submitted results have been compared. As a result, status of accuracy with the current data and method and some problems to be solved in the future were clarified.

Journal Articles

Burnup importance function and its application to OECD/NEA/BUC phase II-A and II-C models

Okuno, Hiroshi; Tonoike, Kotaro; Sakai, Tomohiro*

Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 8 Pages, 2002/10

As the burnup proceeds, reactivity of fuel assemblies for light water reactors decreases by depletion of fissile nuclides, especially in the axially central region. In order to describe the importance of the end regions to the reactivity change, a burnup importance function was introduced as a weighting function to a local burnup variation contributed to a reactivity decrease. The function was applied to the OECD/NEA/BUC Phase II-A model and a simplified Phase II-C model. The application to Phase II-A model clearly showed that burnup importance of the end regions increases as burnup and/or cooling time increases. Comparison of the burnup importance function for different initial enrichments was examined. The application result to the simplified Phase II-C model showed that the burnup importance function was helpful to find the most reactive fuel burnup distribution under the conditions that the average fuel burnup was kept constant and the variations in the fuel burnup were within the maximum and minimum measured values.

JAEA Reports

Proposal and analysis of the benchmark problem suite for reactor physics study of LWR next generation fuels

Research Committee on Reactor Physics

JAERI-Research 2001-046, 326 Pages, 2001/10

JAERI-Research-2001-046.pdf:14.45MB

The Working Party on Reactor Physics for LWR Next Generation Fuels in the Research Committee on Reactor Physics, which is organized by the Japan Atomic Energy Research Institute, has recently proposed a series of benchmark problems to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels. The next generation fuels mean the ones aiming for further extended burnup such as 70GWd/t over the current design. The resultant specifications of the benchmark problem therefore neglect some of the current limitations such as 5wt%235U to achieve the above-mentioned target. The Working Party proposed six benchmark problems, which consist of pin-cell, PWR assembly and BWR assembly geometries loaded with uranium and MOX fuels, respectively. The present report describes the detailed specifications of the benchmark problems. The results of preliminary analyses performed by the eleven member organizations and their comparisons are also presented.

JAEA Reports

PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

Lemehov, S.; Suzuki, Motoe

JAERI-Data/Code 2001-025, 338 Pages, 2001/08

JAERI-Data-Code-2001-025.pdf:26.87MB

PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO2, UO2-Gd2O3, inhomogeneous MOX, and UO2-ThO2. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of 92U233-239, 93Np237-239, 94Pu238-243, 95Am241-244 (including isomers), and 96Cm242-245. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained.

JAEA Reports

Reactivity effect of spent fuel depending on burn-up history

Hayashi, Takafumi*; Suyama, Kenya; Mochizuki, Hiroki*; Nomura, Yasushi

JAERI-Tech 2001-041, 158 Pages, 2001/06

JAERI-Tech-2001-041.pdf:5.15MB

no abstracts in English

35 (Records 1-20 displayed on this page)